115 research outputs found

    Phonon-Induced Dephasing in Quantum Dot-Cavity QED

    Get PDF
    We present a semi-analytic and asymptotically exact solution to the problem of phonon-induced decoherence in a quantum dot-microcavity system. Particular emphasis is placed on the linear polarization and optical absorption, but the approach presented herein may be straightforwardly adapted to address any elements of the exciton-cavity density matrix. At its core, the approach combines Trotter's decomposition theorem with the linked cluster expansion. The effects of the exciton-cavity and exciton-phonon couplings are taken into account on equal footing, thereby providing access to regimes of comparable polaron and polariton timescales. We show that the optical decoherence is realized by real phonon-assisted transitions between different polariton states of the quantum dot-cavity system, and that the polariton line broadening is well-described by Fermi's golden rule in the polariton frame. We also provide purely analytic approximations which accurately describe the system dynamics in the limit of longer polariton timescales

    Resonant-state expansion for open optical systems: Generalization to magnetic, chiral, and bi-anisotropic materials

    Get PDF
    The resonant-state expansion, a recently developed powerful method in electrodynamics, is generalized here for open optical systems containing magnetic, chiral, or bi-anisotropic materials. It is shown that the key matrix eigenvalue equation of the method remains the same, but the matrix elements of the perturbation now contain variations of the permittivity, permeability, and bi-anisotropy tensors. A general normalization of resonant states in terms of the electric and magnetic fields is presented.Comment: 4 page

    Exciton effective mass enhancement in coupled quantum wells in electric and magnetic fields

    Get PDF
    We present a calculation of exciton states in semiconductor coupled quantum wells (CQWs) in the presence of electric and magnetic fields applied perpendicular to the QW plane. The exciton Schr\"odinger equation is solved in real space in three dimensions to obtain the Landau levels of both direct and indirect excitons. Calculation of the exciton energy levels and oscillator strengths enables mapping of the electric and magnetic field dependence of the exciton absorption spectrum. For the ground state of the system, we evaluate the Bohr radius, optical lifetime, binding energy and dipole moment. The exciton mass renormalization due to the magnetic field is calculated using a perturbative approach. We predict a non-monotonous dependence of the exciton ground state effective mass on magnetic field. Such a trend is explained in a classical picture, in terms of the ground state tending from an indirect to a direct exciton with increasing magnetic field.Comment: 20 pages, 7 figure

    Exact mode volume and Purcell factor of open optical systems

    Get PDF
    The Purcell factor quantifies the change of the radiative decay of a dipole in an electromagnetic environment relative to free space. Designing this factor is at the heart of photonics technology, striving to develop ever smaller or less lossy optical resonators. The Purcell factor can be expressed using the electromagnetic eigenmodes of the resonators, introducing the notion of a mode volume for each mode. This approach allows to use an analytic treatment, consisting only of sums over eigenmode resonances, a so-called spectral representation. We show in the present work that the expressions for the mode volumes known and used in literature are only approximately valid for modes of high quality factor, while in general they are incorrect. We rectify this issue, introducing the exact normalization of modes. We present an analytic theory of the Purcell effect based on the exact mode normalization and resulting effective mode volume. We use a homogeneous dielectric sphere in vacuum, which is analytically solvable, to exemplify these findings.Comment: Letter: 5 pages, 2 figures. Supplementary material: 16 pages, 10 figure

    Controlled strong coupling and absence of dark polaritons in microcavities with double quantum wells

    Full text link
    We demonstrate an efficient switching between strong and weak exciton-photon coupling regimes in microcavity-embedded asymmetric double quantum wells, controlled by an applied electric field. We show that a fine tuning of the electric field leads to drastic changes in the polariton properties, with the polariton ground state being red-shifted by a few meV and having acquired prominent features of a spatially indirect dipolar exciton. We study the properties of dipolar exciton polaritons, called dipolaritons, on a microscopic level and show that, unlike recent findings, they are not dark polaritons but, owing to the finite size of the excition, are mixed states with comparable contribution of the cavity photon, bright direct, and long-living indirect exciton modes.Comment: 5 pages, 5 figures, and supplementary materia

    Comment on "Dephasing Times in Quantum Dots due to Elastic LO Phonon-Carrier Collisions"

    Full text link
    This paper is a Comment on Phys. Rev. Lett. 85, 1516 (2000) by A.V. Uskov, A.-P. Jauho, B. Tromborg, J. Mork, and R. Lang.Comment: 1 page, 1 figure. Phys. Rev. Lett., accepte

    Terahertz Response of Acoustically-Driven Optical Phonons

    Get PDF
    The manipulation of TO-phonon polaritons and the terahertz (THz) light field associated with them by means of an ultra-sound acoustic wave is proposed and illustrated by calculating the TO-phonon-mediated THz response of acoustically-pumped CuCl and TlCl crystals. We show the high-contrast acoustically-induced change of the THz reflectivity alongside with multiple THz Bragg replicas, which are associated with the infrared-active TO-phonon resonance driven by the ultrasonic wave. The effect, which stems from phonon anharmonicity, refers to an operating acoustic intensity I_ac ~ 1-100 kW/cm^2 and frequency nu_ac ~ 0.1 - 1 GHz, with possible applications in THz spectroscopy.Comment: 10 pages, 4 figure

    Full electromagnetic Green's dyadic of spherically symmetric open optical systems and elimination of static modes from the resonant-state expansion

    Get PDF
    A general analytic form of the full 6 Ɨ 6 dyadic Greenā€™s function of a spherically symmetric open optical system is presented, with an explicit solution provided for a homogeneous sphere in vacuum. Diļ¬€erent spectral representations of the Greenā€™s function are derived using the MittagLeļ¬„er theorem, and their convergence to the exact solution is analyzed, allowing us to select optimal representations. Based on them, more eļ¬ƒcient versions of the resonant-state expansion (RSE) are formulated, with a particular focus on the static mode contribution, including versions of the RSE with a complete elimination of static modes. These general versions of the RSE, applicable to nonspherical optical systems, are veriļ¬ed and illustrated on exactly solvable examples of a dielectric sphere in vacuum with perturbations of its size and refractive index, demonstrating the same level of convergence to the exact solution for both transverse electric and transverse magnetic polarizations
    • ā€¦
    corecore